RSS подписка
Реклама

 
Медицина » Биохимия » Биологическое значение трансаминирования
Трансаминирование – первая стадия дезаминирования большинства аминокислот, т.е. начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование – заключительный этап синтеза заменимых аминокислот из соответствующих кетокислот, если они необходимы в данный момент клеткам. В результате происходит перераспределение аминнного азота в тканях. При трансаминированиии общее количество аминокислот в клетке не меняется.
Оксидазы D-аминокислот. При физиологических значениях рН в тканях высоко активны оксидазы D-аминокислот. Они также обнаружены в почках и печени и находятся в микросомах. Роль оксидаз D-аминокислот невелика и до конца не понятна, потому что в белки пищи и тканей человека входят только природные L-аминокислоты.
В печени человека присутствуют специфические ферменты, катализирующие реакции дезаминирования серина, треонина, цистеина и гистидина неокислительным путем.
Автор: Admin | Добавлено: 6-02-2012, 20:26 | Комментариев (0)
Медицина » Биохимия » Трансаминирование аминокислот
Трансаминирование – реакции переноса a-аминогруппы с аминокислоты на a-кетокислоту, в результате чего образуются новая кетокислота и новая аминонокислота. Реакции катализируют ферменты аминотрансферазы. Это сложные ферменты, коферментом которых является производное витамина В6 – пиридоксальфосфат, который обратимо может переходить в пиридоксаминфосфат. Реакции трансаминирования обратимы, и могут проходить как в цитоплазме, так и в митохондриях клеток. В клетках человека найдено более 10 аминотрансфераз, отличающихся по субстратной специфичности. Вступать в реакции трансаминирования могут почти все аминокислоты, за исключением лизина, треонина и пролина.
Реакции трансаминирования протекают в 2 стадии. На первой стадии к пиридоксальфосфату в активном центре фермента присоединяется аминогруппа от первого субстрата – аминокислоты. Образуется комплекс фермент- пиридоксаминфосфат и кетокислота – первый продукт реакции. Этот процесс включает промежуточное образование 2 шиффовых оснований (альдимин и кетимин).
На второй стадии пиридоксаминфосфат соединяется с новой кетокислотой (второй субстрат) и снова через промежуточное образование 2 шиффовых оснований передает аминогруппу на кетокислоту. В результате фермент возвращается в свою нативную форму, и образуется новая аминокислота – второй продукт реакции.

 Трансаминирование аминокислот
Автор: Admin | Добавлено: 6-02-2012, 20:26 | Комментариев (0)
Медицина » Биохимия » Пути обмена аминокислот в тканях
Аминокислоты – это бифункциональные соединения, содержащие аминную и карбоксильную группу. Реакции по этим группам являются общими для различных аминокислот. К ним относят:
· по аминной группе – реакции дезаминирования и трансаминирования;
· по карбоксильной группе – реакции декарбоксилирования.

Кроме этих общих путей возможны реакции по углеводородному радикалу аминокислот, которые являются специфическими для каждой аминокислоты.
Катаболизм большинства аминокислот начинается с отщепления a-аминогруппы, которое возможно в реакциях трансаминировани и дезаминирования.
Автор: Admin | Добавлено: 6-02-2012, 20:24 | Комментариев (0)
Медицина » Биохимия » Превращение аминокислот микрофлорой кишечника
Микроорганизмы кишечника располагают набором ферментативных систем, отличных от соответствующих ферментов тканей организма человека и катализирующих самые разнообразные превращения пищевых аминокислот и не переваренных белков, в том числе и по несвойственным человеку метаболическим путям (гнилостный распад). В результате образуются два типа веществ:
- токсические продукты: фенол, крезол, индол, скатол, сероводород, амины, меркаптан;

Нетоксические продукты: кетокислоты, оксикислоты, жирные кислоты, спирты.
Обезвреживание токсических веществ происходит путем образования парных нетоксичных продуктов при соединении с 3-фосфоаденозин-5-фосфосульфатом (ФАФС, активированная форма серной кислоты), либо с уридиндифосфоглюкуроновой кислотой (УДФ-глюкуронат).
При кишечных инфекциях (дизентерия, брюшной тиф, холера) образуется во много раз большое количество продуктов гнилостного распада аминокислот, которые вызывают общую интоксикацию организма, нарушение проницаемости мембран слизистой оболочки кишечника, приводящее к поносам, обезвоживанию тканей и повышению температуры тела. Кроме того, возрастает активность декарбоксилаз патогенных бактерий, в результате образуются амины, создающие картину инфекционного заболевания.
Автор: Admin | Добавлено: 6-02-2012, 20:24 | Комментариев (0)
Медицина » Биохимия » Расщепление белков в тканях
Осуществляется с помощью протеолитических лизосомальных ферментов катепсинов. По строению активного центра выделяют цистеиновые, сериновые, карбоксильные и металлопротеиновые катепсины. Роль катепсинов:
· создание биологически активных пептидов путем ограниченного протеолиза белковых предшественников;
· разрушение состарившихся и аномальных белков;
· участие в фагоцитозе и делении клеток;
· участие в аутолизе (при ишемии);
· участие в патогенезе заболеваний, связанных с изменением функций лизосом (лизосомальные болезни накопления).
Кроме процессов протеолиза в лизосомах возможен процесс разрушения эндогенных белков непосредственно в цитозоле. При этом происходит соединение подлежащих гидролизу белков со специальным белком убиквитином. Происходит ковалентная модификация белка, что может изменять его функцию. К одной молекуле может быть присоединено несколько молекул убиквитина и это служит сигналом для переноса белка-мишени на большую высокомолекулярную частицу протеасому, состоящую из протеаз.
Автор: Admin | Добавлено: 6-02-2012, 20:24 | Комментариев (0)
Медицина » Биохимия » Наследственные нарушения транспорта аминокислот
Болезнь Хартнупа – нарушение всасывания триптофана в кишечнике и его реабсорбции в почечных канальцах. Так как триптофан служит исходным продуктом для синтеза витамина РР, то основные проявления болезни Хартнупа – дерматиты, диарея и деменция, характерные для пеллагры.
Цистинурия – нарушение реабсорбции цистина в почках. Цистин плохо растворим в воде, поэтому выпадает в виде кристаллов, которые приводят к образованию цистиновых камней в почках и мочевыводящих путях.
Автор: Admin | Добавлено: 6-02-2012, 20:24 | Комментариев (0)
Медицина » Биохимия » Переваривание белков в желудочно-кишечном тракте
Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других пищеварительных соков сильно кислой реакцией, благодаря присутствию свободной соляной кислоты, секретируемой обкладочными клетками слизистой желудка.
Секреция соляной кислоты представляет активный транспорт, осуществляемый протонной АТФ-азой с затратой АТФ.
Роль соляной кислоты:
· денатурирует белки;
· стерилизует пищу;
· вызывает набухание труднорастворимых белков;
· активирует пепсиноген;
· создает рН-оптимум для действия пепсина;
· способствует всасыванию железа;
· вызывает секрецию секретина в двенадцатиперстной кишке.
В желудочном соке содержатся протеолитические ферменты пепсин, гастриксин и реннин. Главным из них является пепсин. Он вырабатывается главными клетками слизистой желудка в виде профермента пепсиногена. Активация его осуществляется соляной кислотой (медленная) и аутокаталитически пепсином (быстрая) путем отщепления фрагмента полипептидной цепи с N-конца (частичный протеолиз). При этом происходит изменение конформации молекулы и формирование активного центра.
Автор: Admin | Добавлено: 6-02-2012, 20:23 | Комментариев (0)
Медицина » Биохимия » ОБМЕН АМИНОКИСЛОТ. ДИНАМИЧЕСКОЕ СОСТОЯНИЕ БЕЛКОВ ОРГАНИЗМА
Значение аминокислот для организма в первую очередь заключается в том, что они используются для синтеза белков, метаболизм которых занимает особое место в процессах обмена веществ между организмом и внешней средой. Аминокислоты непосредственно участвуют в биосинтезе большого количества других биологически активных соединений, регулирующих процессы обмена веществ в организме, таких как нейромедиаторы и гормоны. Аминокислоты служат донорами азота при синтезе всех азотсодержащих небелковых соединений, в том числе нуклеотидов, гема, креатина, холина и др.

ОБМЕН АМИНОКИСЛОТ. ДИНАМИЧЕСКОЕ СОСТОЯНИЕ БЕЛКОВ ОРГАНИЗМА

Рис. 23.1. Общая схема метаболизма аминокислот в организме

Катаболизм аминокислот является источником энергии для синтеза АТФ. Энергетическая функция аминокислот становится значимой при голодании, некоторых патологических состояниях (сахарный диабет). Именно обмен аминокислот осуществляет взаимосвязь многообразных химических превращений в живом организме.
Большая часть аминокислот входит в состав белков, количество которых в организме взрослого человека составляет примерно 15 кг.
Какой-либо специальной формы депонирования аминокислот и белков, подобно глюкозе или жирным кислотам не существует. Поэтому резервом аминокислот могут служить все функциональные и структурные белки тканей, но преимущественно белки мышц. В организме человека в сутки распадается на аминокислоты около 400 г белков, примерно такое же количество синтезируется. Поэтому тканевые белки не могут восполнять затраты аминокислот при их катаболизме и использовании на синтез других веществ. Период полураспада белков различен – от нескольких минут до нескольких суток. Первичными источниками аминокислот не могут служить и углеводы, так как из них синтезируется только углеродная часть молекулы, а аминогруппа поступает от других аминокислот. Следовательно, основным источником аминокислот организма служат белки пищи.
Автор: Admin | Добавлено: 6-02-2012, 20:23 | Комментариев (0)
Медицина » Биохимия » Биохимия атеросклероза
Атеросклероз – это патология, характеризующаяся появлением атерогенных бляшек на внутренней поверхности сосудистой стенки. Одна из основных причин развития такой патологии – нарушение баланса между поступлением холестерола с пищей, его синтезом и выведением из организма. У пациентов, страдающих атеросклерозом, повышены концентрации ЛПНП и ЛПОНП. Существует обратная зависимость между концентрацией ЛПВП и вероятностью развития атеросклероза. Это согласуется с представлениями о функционировании ЛПНП как переносчиков ХС в ткани, а ЛПВП – из тканей.
Базовой метаболической «предпосылкой» развития атеросклероза является гиперхолестеролемия. (повышенное содержание холестерола в крови). Гиперхолестеролемия развивается:
· вследствие избыточного поступления ХС, углеводов и жиров;
· генетической предрасположенности, заключающейся в наследственных дефектах структуры рецепторов ЛПНП или апоВ-100, а также в повышенном синтезе или секреции апоВ-100 (в случае семейной комбинированной гиперлипидемии, при которой в крови повышены концентрации и ХС и ТАГ).
Важную роль в механизмах развития атеросклероза играет модифицирование ЛП. Изменения нормальной структуры липидов и белков в составе ЛПНП делает их чужеродными для организма и поэтому более доступными для захвата фагоцитами. Модифицирование ЛП может происходить по нескольким механизмам:
- гликозилирование белков, происходящее при увеличении концентрации глюкозы в крови;
- перекисная модификация, приводящая к изменениям липидов в липопротеинах и структуры апоВ-100;
- формирование аутоиммунных комплексов ЛП-антитело (изменённые ЛП могут становиться причиной образования аутоантител).
Автор: Admin | Добавлено: 6-02-2012, 20:21 | Комментариев (0)
Медицина » Биохимия » Желчнокаменная болезнь (ЖКБ)
Желчнокаменная болезнь (ЖКБ) – патологический процесс, при котором в жёлчном пузыре образуются камни, основу которых составляет ХС.
Выделение ХС в жёлчь должно сопровождаться пропорциональным выделением жёлчных кислот и фосфолипидов, удерживающих гидрофобные молекулы ХС в мицеллярном состоянии. Причинами, приводящими к изменению соотношения жёлчных кислот и ХС в жёлчи являются: пища, богатая ХС, высококалорийное питание, застой жёлчи в жёлчном пузыре, нарушение энтерогепатической циркуляции, нарушения синтеза жёлчных кислот, инфекции жёлчного пузыря.
У большинства больных ЖКБ синтез ХС увеличен, а синтез жёлчных кислот из него замедлен, что приводит к диспропорции количества ХС и жёлчных кислот, секретируемых в жёлчь. В итоге ХС начинает осаждаться в жёлчном пузыре, образуя вязкий осадок, который постепенно затвердевает. Иногда он пропитывается билирубином, белками и солями кальция. Камни могут состоять только из ХС (холестериновые камни) или из смеси ХС, билирубина, белков и кальция. Холестериновые камни обычно белого цвета, а смешанные – коричневые разных оттенков.
В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолевую кислоту. Попадая в жёлчный пузырь, она постепенно растворяет холестериновые камни, однако это медленный процесс, длящийся несколько месяцев.
Автор: Admin | Добавлено: 6-02-2012, 20:21 | Комментариев (0)