RSS подписка
Реклама

 
Медицина » Биохимия » Биосинтез пиримидиновых нуклеотидов
Фонд пиримидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников de novo, и только 10-20% от общего количества образуется по «запасным» путям из азотистых оснований или нуклеозидов.
В отличие от синтеза пуринов, где формирование гетероциклического основания осуществляется на остатке рибозо-5-фосфата, пиримидиновое кольцо синтезируется из простых предшественников: глутамина, СО2 и аспарагиновой кислоты и затем связывается с рибозо-5-фосфатом, полученным от ФРДФ.
Процесс протекает в цитозоле клеток. Синтез ключевого пиримидинового нуклеотида – УМФ идёт с участием 3 ферментов, 2 из которых полифункциональны.
Автор: Admin | Добавлено: 6-02-2012, 21:05 | Комментариев (0)
Медицина » Биохимия » Регуляция синтеза пуриновых нуклеотидов
Образование АМФ и ГМФ регулируется аллостерическими механизмами по принципу обратной связи (рис. 26.1). АМФ и ГМФ ингибируют активность ферментов синтеза фосфорибозиламина, а также, соответственно, активность аденилосукцинатсинтетазы и ИМФ-дегидрогеназы. При этом АТФ и ГТФ оказывают перекрестное активирующее влияние.
Автор: Admin | Добавлено: 6-02-2012, 21:04 | Комментариев (0)
Медицина » Биохимия » Биосинтез пуриновых нуклеотидов
В 40-50-х годах ХХ столетия при проведении опытов с мечеными изотопами удалось выяснить происхождение атомов пуринового ядра при синтезе пуринов de novo. Было установлено, что в формировании кольца принимают участие аминокислоты ( аспарагиновая, глициновая, глутаминовая) СО2 и два одноуглеродных производных тетрагидрофолата: метенил-Н4-фолат. Этим способом образуется основное количество пуриновых нуклеотидов, тогда как нуклеотиды, синтезирующиеся за счёт повторного использования азотистых оснований или нуклеозидов, составляют не более 10-20% общего фонда этих соединений.
Автор: Admin | Добавлено: 6-02-2012, 21:04 | Комментариев (0)
Медицина » Биохимия » ОБМЕН НУКЛЕОТИДОВ
Практически все клетки организма способны к синтезу нуклеотидов (исключение составляют некоторые клетки крови). Другим источником этих молекул могут быть нуклеиновые кислоты собственных тканей и пищи, однако эти источники имеют лишь второстепенное, вспомогательное значение.
Пуриновые и пиримидиновые нуклеотиды являются существенными компонентами клеток. Они или их производные выполняют различные функции:
· Нуклеозидтрифосфаты (НТФ) используются в качестве субстратов синтеза ДНК и РНК, без которых невозможны образование белков и клеточная пролиферация.
· Природа выбрала цикл АДФ-АТФ в качестве универсального механизма трансформации энергии окисления в энергию биосинтетических процессов. В некоторых биологических процессах и другие НТФ используются в качестве источника энергии.
· Производные нуклеотидов служат донорами активных субстратов в синтезе гомо- и гетерополисахаридов, липидов и белков. Например: УДФ-глюкоза, УДФ-галактоза, ГДФ-манноза, УДФ-N-ацетилглюкозамин или ЦМФ-ацетилнейраминовая кислота принимают участие в синтезе гликогена и гликозаминогликанов; ЦДФ-холин – в синтезе фосфолипидов.
· УДФ-глюкуроновая кислота, ФАФС, S-аденозилметионин – наиболее частые участники универсальной системы детоксикации, обеспечивающей последующее выведение ксенобиотиков (чужеродных веществ) и некоторых собственных метаболитов из организма.
· АМФ входит в состав коферментов дегидрогеназ (НАД+, НАДФ+, ФАД, ФМН) и ацилирования (КоА).
· С помощью циклических форм нуклеотидов (цАМФ, цГМФ) осуществляется передача в клетку сигналов гормонов, факторов роста, нейромедиаторов и некоторых других регуляторных молекул.
Автор: Admin | Добавлено: 6-02-2012, 21:03 | Комментариев (0)
Медицина » Биохимия » Нарушение обмена фенилаланина и тирозина
Фенилкетонурия
В печени здоровых людей небольшая часть фенилаланина (до 10%) превращается в фениллактат и фенилацетилглутамин. Этот путь катаболизма фенилаланина становится главным при нарушении основного пути – превращения в тирозин, катализируемого фенилаланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания фенилаланина и его метаболитов альтернативного пути. Классическая фенилкетонурия – наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы. Наиболее тяжелые проявления фенилкетонурии – нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. Эти проявления связаны с токсическим действием на клетку высоких концентраций фенилаланина, фенилпирувата, фениллактата.

Тирозинемии
Наследственные нарушения метаболизма тирозина в печени. Известно два типа.
I тип – дефект фермента фумарилацетоацетатгидроксилазы, из-за которого накапливаются в крови токсические метаболиты что приводит к тяжелому поражению печени и почек.
При II типе нет фермента тирозинаминотрансферазы. Повышется концентрация тирозина, наблюдается гиперкератоз ладоней и подошв.
Автор: Admin | Добавлено: 6-02-2012, 21:03 | Комментариев (0)
Медицина » Биохимия » Метаболизм фенилаланина и тирозина
Фенилаланин – незаменимая аминокислота, так как в клетках животных не синтезируется ее бензольное кольцо. Метаболизм метионина осуществляется по 2-м путям: включается в белки или превращается в тирозин под действием специфической монооксигеназы – фенилаланингидроксилазы. Данная реакция необратима и играет важную роль в удалении избытка фенилаланина, так как высокие концентрации его токсичны для клеток.
Обмен тирозина значительно сложнее. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений как катехоламины, тироксин, меланин и др.
В печени происходит катаболизм тирозина до конечных продуктов фумарата и ацетоацетата. Фумарат может окислятся до СО2 и Н2О или использоваться для глюконеогенеза.
Превращение тирозина в меланоцитах. Он является предшественником меланинов. Синтез меланинов – сложный многоступенчатый процесс, первую реакцию – превращение тирозина в ДОФА – катализирует тирозиназа, использующая в качестве кофактора ионы меди.
В щитовидной железе из тирозина синтезируются гормоны тироксин и трийодтиронин.
В мозговом веществе надпочечников и нервной ткани тирозин является предшественником катехоламинов. Промежуточным продуктом их синтеза является ДОФА. Однако в отличие от меланоцитов, гидроксилирование тирозина осуществляется под действием тирозингидроксилазы, которая является Fe2+- зависимым ферментом, и его активность регулирует скорость синтеза катехоламинов.
Автор: Admin | Добавлено: 6-02-2012, 21:03 | Комментариев (0)
Медицина » Биохимия » Синтез креатина
Креатин необходим для образования в мышцах макроэргического соединения креатинфосфата. Синтез креатина идет в 2 стадии с использованием 3 аминокислот: аргинина, глицина и метионина. В почках образуется гуанидинацетат при действии глицинамидинотрансферазы. Затем гуанидинацетат транспортируется в печень, где происходит реакция его метилирования с образованием креатина. Креатин с током крови переносится в мышцы и клетки мозга, где из него под действием креатинкиназы (реакция легко обратима) образуется креатинфосфат – своеобразное депо энергии.
Автор: Admin | Добавлено: 6-02-2012, 21:03 | Комментариев (0)
Медицина » Биохимия » Реакция активации метионина
Активной формой метионина является S-аденозилметионин (SAM), образующийся в результате присоединения метионина к молекуле аденозина. Аденозин образуется при гидролизе АТФ. Эту реакцию катализирует фермент метионинаденозинтрансфераза, присутствующий во всех типах клеток. Она уникальна для биологических систем, так как является единственной реакцией, в результате которой освобождаются все три фосфатных остатка АТФ. Отщепление метильной группы от SAM и перенос ее на соединение-акцептор катализируют ферменты метилтрансферазы. SAM в ходе реакции превращается в S-аденозилгомоцистеин (SAГ).
Реакции метилирования играют важную роль в организме и протекают очень интесивно. Они используются для синтеза:
· фосфатидилхолина из фосфатидилэтаноламина;
· карнитина;
· креатина;
· адреналина из норадреналина;
· метилировании азотистых оснований в нуклеотидах;
· инактивации метаболитов (гормонов, медиаторов) и обезвреживании чужеродных соединений.
Все эти реакции вызывают большой расход метионина, так как он является незаменимой аминокислотой. В связи с этим играет большое значение возможность регенерации метионина. В результате отщепления метильной группы SAM превращается в SAГ, который при действии гидролазы расщепляется на аденозин и гомоцистеин. Гомоцистеин может снова превращаться в метионин под действием гомоцистеинметилтрансферазы. Донором метильной группы в этом случае служит 5-метилтетрагидрофолиевая кислота (5-метил-ТГФК), которая превращается в ТГФК. Промежуточным переносчиком метильной группы в этой реакции служит производное витамина B12 - метилкобаламин, выполняющий роль кофермента. Поставщиком одноуглеродных фрагментов для регенерации 5-метил-ТГФК служит серин, который превращается в глицин.
Автор: Admin | Добавлено: 6-02-2012, 21:02 | Комментариев (0)
Медицина » Биохимия » Метаболизм метионина
Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий акцептор называют трансметилированием, имеющим важное метаболическое значение. Метильная группа в молекуле метионина прочно связана с атомом серы, поэтому непосредственным донором одноуглеродного фрагмента служит активная форма аминокислоты.

Метаболизм метионина

Рисунок 25.1. Обмен метионина.
Автор: Admin | Добавлено: 6-02-2012, 21:02 | Комментариев (0)
Медицина » Биохимия » Нарушения синтеза и выведения мочевины
Гипераммониемия – повышение концентрации аммиака в крови. Интоксикация аммиаком лежит в основе развития печеночной комы. Одной из главных причин токсичности NH3 на молекулярном уровне является его способность восстановительно аминировать a-кетоглутарат в глутамат. В результате происходит изъятие a-кетоглутаровой кислоты из ЦТК. Это может привести к замедлению регенерации оксалоацетата и, как следствие, к накоплению ацетил-КоА, а через него к кетонемии и ацидозу, а также к ослаблению потока протонов и электронов в ЦТД и снижению продукции АТФ.
Повышенная концентрация аммиака в организме приводит к активации глутаминсинтазы. При этом количество глутамата, который является нейромедиатором в ЦНС и предшественнком ГАМК, истощается. Если гиперамониемия не поддается лечению, то развиваются тяжелые нарушения психики.
Выделяют первичную (врожденную) и вторичную (приобретенную) гипераммониемию. К настоящему времени описаны врожденные дефекты каждого фермента, участвующего в синтезе мочевины:
· Гипреаммониемия I-го типа – дефект карбамоилфосфатсинтетазы I.
· Гипреаммониемия II-го типа – дефект орнитинкарбамоилтрансферазы.
· Цитруллинемия – отсутствует аргининосукцинатсинтаза.
· Аргининосукцинатацидурия – дефект аргининосукцинатлиазы.
· Гипераргининемия – дефект аргиназы.
· Полная потеря активности хотя бы одного из ферментов орнитинового цикла мочевинообразования приводит в летальному исходу.
Автор: Admin | Добавлено: 6-02-2012, 20:59 | Комментариев (0)